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State-of-the-art instrumentation techniques have provided an opportunity to obtain 

greater insight into structural wing loads during flight. An investigation was undertaken to 

research new wing instrumentation and load sensing techniques for measuring accurate in-

flight spanwise load distributions on wing structures. A straight tapered wing was 

instrumented with both conventional foil strain gages at five spanwise wing stations and fiber 

optic strain sensors at every half inch along the entire wing span. Thirty-nine unique load 

cases were applied to the wing lower surface using hydraulic actuators to obtain various shear, 

bending moment, and torque load distributions on the wing. This paper will highlight three 

load calibration approaches. Conventional linear regression calibration methods were applied 

to foil strain gages providing a single wing station vertical shear, bending moment, and torque 

load. Linear regression methods were applied to a fiber optic sensing system to provide 

bending moment and torque spanwise load distributions. A load sensing scheme using strain 

derived wing shape information derived from a single load case provided vertical shear and 

bending moment spanwise load distribution information. Aspects of the three different 

approaches will be compared and contrasted to inform the reader of the benefits or 

disadvantages of each. Instrument installation, sensor characteristics, test execution aspects, 

and recommended calibration techniques will be discussed.  

I. Nomenclature 

AAW  = Active Aeroelastic Wing 

ACTE        =   Adaptive Compliant Trailing Edge 

AFRC   =  Armstrong Flight Research Center 

BL  = butt line 

CREW  = Calibration Research Wing 

c  = distance to neutral axis 

d  = distance 

dx  = difference in x 

dy  = difference in y 

dz  = difference in z 

DIC  = digital image correlation 

DOF  = degrees of freedom 

DTF  =   Displacement Transfer Function 

E  = Young’s Modulus 

EI  = section properties 
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EQDE  = equation derivation 

ERMS  =   root mean square error divided by root mean square load 

FBG  =   fiber Bragg gratings 

FEM  =   finite element method 

FLL   =   Flight Loads Laboratory 

FOSS  =   fiber optic sensing system 

FS  = fuselage station 

g  = acceleration of gravity 

h  = structure height at a given cross-section 

I  = area moment of inertia 

ISG  = internal strain gage 

i    = sensor station index number  

iFEM  = inverse Finite Element Method 

j    = jth load measurement point 

KError  = proportional error 

Kp  = proportional gain 

k  = kth strain gage 

LAX  = lower surface axial gage 

LSG  = lower surface gage 

M  = bending moment 

m  = number of load measurements 

NASA  =   National Aeronautics and Space Administration 

n  = number of gages 

OLEA  =   Operational Loads Estimation Algorithm 

RMS  = root mean square 

SG  = strain gage 

UAX  = upper surface axial gage 

USG  = upper surface gage 

V  = shear load 

VG    = initial guess of shear load 

VM    = temporary variable for shear load 

VO    = shear load output 

v    = Poisson’s ratio 

WS   = wing station 

𝑥𝑗    = measured value 

𝑥′𝑗     = derived value 

Z    = axis aligned in the vertical direction 

ZM    = temporary variable for vertical deflection 

ZO    = estimated vertical deflection 

𝑧    = beam displacement 

𝛽    = strain gage coefficients 

Δ𝐿    = distance between sensing stations 

𝜀    = axial strain 

𝜇    = strain gage output 

𝜎    = axial stress 

ϕ    = wing plunge angle relative to horizontal 

II. Introduction 

Future flight vehicles will incorporate the use of lightweight highly-flexible tailored composite wings and morphing 

control surfaces. Advances in strain sensing technology have provided the ability to collect strain information along 

the entire wingspan as compared to only monitoring the strains or loads at a single wingspan station. This paper will 

highlight the use of a fiber optic sensing system (FOSS) for monitoring the loads on a wing. The results will show the 

ability to calculate the spanwise load distribution along the wing using FOSS instrumentation methods. 

There are multiple reasons one may want to know the loads on a wing in flight, such as airworthiness clearance, 

health monitoring, structural load alleviation, structural optimization, or aerodynamic model validation. Aircraft 
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structures have to complete envelope clearance prior to being certified for flight operations. Understanding the loads 

and verifying that they are staying within limits is critical to accomplishing a successful airworthiness envelope 

clearance. Multiple projects, such as the Grumman X-29 Forward Swept Wing Research airplane and the F-18 Active 

Aeroelastic Wing (AAW) (McDonnell Douglas, now The Boeing Company, Chicago, Illinois), flown at National 

Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California), 

have all required load monitoring during envelope clearance [1, 2]. Health monitoring schemes also require operational 

load information over the aircraft lifetime [3]. Having insight into the operational loads environment allows for more 

informed inspections and maintenance decisions. Structural load alleviation schemes have had some success in the 

past, but have always been a desired technology for airplane designers. Morphing structures that are now in 

development, such as the Adaptive Compliant Trailing Edge flown at the AFRC [4], have the ability to shift the load 

distribution along the wing span to reduce loads during high-g maneuvers or gusts. Monitoring the loads at a high 

sampling rate and with sufficient accuracy is vital if the control system is required to modify the load distribution 

during a maneuver or gust. Innovative fabrication techniques such as composite towed steering technology [5] 

providing new structural optimization capabilities require sensors and monitoring methods that can provide much 

greater insight into the structural response than conventional sensors located at specific points on a structure. Structural 

load measurement also can provide insight into the aerodynamic loads. Aerodynamic model validation allows the in-

flight measured structural loads with inertial correction to be used to validate computational fluid dynamic and wind-

tunnel models. Previous NASA Armstrong projects have called for instrumenting wing surfaces for loads 

measurements for envelope clearance, but at the same time providing aerodynamic model validation opportunities 

[6, 7].     

Conventional foil strain gages have provided a reliable method for monitoring the vertical shear, bending moment, 

and torque loads at a few spanwise stations on a wing for many historical airplanes. It is common that only a few 

spanwise stations are monitored due to the amount of strain gages that are required to be installed. Excessive numbers 

of strain gages require a great deal of lead wire routing which adds additional weight to the flight vehicle. Available 

space for internal lead wire routing may also be a limiting factor. Monitoring the loads at a single wing station is 

usually more than adequate from an airworthiness monitoring and flight envelope expansion standpoint. The X-29 

Forward Swept Wing Research airplane which flew at the AFRC during the 1980s was instrumented for airworthiness 

clearance. The wing instrumentation layout is shown in Fig. 1. The aircraft wing was instrumented with conventional 

metallic strain gages located on spar caps, webs, and the wing skins. A total of four spanwise stations were 

instrumented and monitored. Another example, the F-18 AAW, which flew at AFRC in the 1990s, allowed researchers 

the ability to assess the advantages of using wing torsional flexibility to improve the aircraft maneuverability. The 

AAW aircraft wings were instrumented at two wing stations, along with a few sensors on the leading and trailing edge 

control surfaces for load monitoring. The instrumentation layout for the F-18 AAW is shown in Fig. 2. An extensive 

loads calibration was conducted on the aircraft for calibrating the loads at those spanwise stations. The load pad layout 

for that test is shown in Fig. 3. The load pad layout allowed the test team to apply various combinations of bending 

moment and torque loads to the wing. 

The purpose of this work was to investigate the use of FOSS to assess whether there is a more expedient and 

efficient method for obtaining the distributed loads on aircraft structures which allow greater insight into the structural 

response. The current state of the art sensor platforms now allow designers and researchers a much broader picture of 

the structural response. In preparation for testing more advanced structures, the Flight Loads Laboratory (FLL), at the 

NASA AFRC, has conducted the Calibration Research Wing (CREW) test program to load test a moderately flexible 

General Atomics Aeronautical Systems (Poway, California) MQ-9 wing instrumented with both conventional metallic 

foil strain gages and FOSS. The test program performed a traditional loads calibration test using conventional strain 

gages to derive load equations. This industry standard approach was then compared to the results developed from the 

newer methods using FOSS. 

FOSS technology utilizes an optical fiber with fiber Bragg gratings (FBG) distributed along the length of the fiber. 

The optical fiber is bonded to a substrate or structural surface, and when the substrate is loaded, the fiber senses strain 

at each FBG location. A typical optical fiber with FBGs with half-inch spacing can make approximately 1000 strain 

measurements [8]. With this density of strain measurements and the development of new algorithms that effectively 

use FOSS data, comes the ability to not only measure distributed strains, but also measure distributed shape and loads. 

III. Load Sensing Methods  

NASA AFRC has an extensive history of flight-testing aircraft structures for real-time load monitoring [9]. With 

the advent of FOSS technology, it is worthwhile to take a look at the available load sensing algorithms to assess if 

there are improved methods of load monitoring for aircraft structures. Three load sensing methods will be discussed. 
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The first is linear regression techniques that have been in use since the 1950s and are the industry standard approach 

for in-flight load monitoring. Linear regression techniques have been successfully utilized on many structures 

instrumented with strain gages. Second, this investigation will also take a look at the ability to use FOSS in place of 

conventional strain gages in a linear regression scheme for calculating the distributed loads on the wing. The third 

method called the Operational Loads Estimation Algorithm (OLEA) uses strain derived shape information for the 

structure to back out the distributed shear loads on the structure. This paper documents the first time the OLEA method 

has been applied to a structure. 

In addition to the above methods that will be discussed in this paper, a few additional methods will be highlighted 

for encompassing the field of load calibration and monitoring methods. Linear regression and OLEA methods are 

more than sufficient for a simple high aspect ratio wing of this nature. However, low aspect ratio wings with multiple 

load paths may encounter challenges using these methods. A finite element approach may be more applicable. The 

inverse Finite Element Method (iFEM) provides an opportunity to measure the loads on the wing when the geometry 

of the internal structure is known. The iFEM method was developed by Alexander Tessler at NASA Langley Research 

Center (Hampton, Virginia) over the last 15 years [10-12]. M. Gherlone et al. presented a comprehensive compilation 

of shape-sensing methods including the iFEM method [13]. The benefit of iFEM is that it does not require material 

properties or applied loads for calculating the structural shape. The theoretical foundation of the iFEM is minimization 

of a weighted least-squares smoothing functional that is expressed in terms of the unknown degrees of freedom (DOF) 

and known elemental strain data.  

Once the nodal displacements have been calculated, those displacements can be used to solve for the reaction loads 

at the boundary conditions by prescribing the displacements onto the FEM nodes. It is possible for the model reaction 

loads to be solved at any spanwise station. Previous analytical study was conducted using this method and is detailed 

in Ref. [14]. The study showed that bending moment was matched reasonably well, but shear and torque load matches 

were not acceptable unless strains from the entire model were used.  The iFEM method requires that shear rosettes be 

installed over the entire structure. This method may be more applicable to a low aspect ratio wing with multiple 

redundant load paths. The application of this method also potentially eliminates the need to apply load calibration 

loads to a structure. 

It should also be noted that there are additional methods for monitoring loads that do not directly include structural 

strain information. Correlating wing loads with wing deflections using a multi-linear regression scheme would allow 

researchers the ability to monitor the wing loads in flight. Lizotte et al, showed the use of a flight deflection 

measurement system, installed on the AAW aircraft, to estimate the wing bending loads in flight [15]. A similar 

technique can be used to correlate aircraft state information such as flight measured parameters and control surface 

deflections, with measured loads to create a loads model. This technique was also used on the AAW project and is 

discussed by Allen [16]. A similar method discussed by Montel uses a model based approach derived using aircraft 

state data and pilot inputs to calculate the wing loads in flight [17]. The authors use flight-test data from a UW-9 Sprint 

(Weller Aircraft Construction, Biberfeld, Germany) to validate their loads model. These methods are shown to 

highlight other approaches used for load sensing, but will not be discussed in this paper.  

A. Linear Regression Method Using Conventional Foil Strain Gages 
Calibration of conventional metallic strain gages for loads allows for the monitoring of structural loads in flight. 

The standard method for calibrating strain gages on a structure makes use of the Skopinski-Aiken Method [18]. The 

typical loads measured on a wing include shear, bending moment, and torque loads about a measurement station on 

the wing. Figure 4 highlights the general linear regression scheme with a load station instrumented with conventional 

strain gages and a load application point outboard of the station. The load point has a corresponding bending arm and 

torque arm for calculating bending moment and torque loads. The procedure requires collection of applied loads and 

strain gage data. Loads test points are chosen to vary the center of pressure on the wing surface. Load equations are 

derived using the applied loads and strain gage output data in a multiple linear regression approach.  

Figure 5 shows an example of load data collected during a typical load testing cycle. The linear portion of load 

cycle three (green arrow) is taken from the dataset for calibration. The first load cycle typically contains hysteresis 

which is why the third cycle is used in the loads calibration analysis. An example shown in Table 1, shows the vertical 

shear load, along with the gage output for n, number of gages. Calibrations for bending moment and torque would 

follow a similar approach as shown for vertical shear load. All the data from the load ramp and all of the load cases 

total up to make m, the number of load measurements. There may be hundreds or even thousands of load conditions, 

depending on the sample rate of the data and the number of load cases. 
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Table 1. Calibration dataset for multiple linear regression for vertical shear. 

 

Load 

measurement 

Applied 

load 

Gage A 

output 

Gage B 

output 

Gage C 

output 

Gage D 

output 
… 

Gage n 

output 

1 V1 𝜇1,A 𝜇1,B 𝜇1,C 𝜇1,D … 𝜇1,n 

2 V2 𝜇2,A 𝜇2,B 𝜇2,C 𝜇2,D … 𝜇2,n 

3 V3 𝜇3,A 𝜇3,B 𝜇3,C 𝜇3,D … 𝜇3,n 

… … … … … … … … 

m Vm 𝜇m.A 𝜇m,B 𝜇m,C 𝜇m,D … 𝜇m,n 

 

A 3-gage equation that uses gages A, C, and D and shear load V can be shown in matrix form in Eq. (1). The least-

squares solution for the coefficients 𝛽 can then be found by Eq. (2). 

 

[
 
 
 
 
1
1
1
⋯
1

𝜇
1,A

𝜇
2,A𝜇
3,A
⋯

𝜇
m,A

𝜇
1,C

𝜇
2,C𝜇
3,C
⋯

𝜇
m,C

𝜇
1,D

𝜇
2,D𝜇
3,D
⋯

𝜇
m,D

]
 
 
 
 

[

𝛽0

𝛽1

𝛽2

𝛽3

]=

[
 
 
 
 
𝑉0

𝑉1

𝑉2
⋯
𝑉𝑚]

 
 
 
 

 

 

(1) 

 

[𝜇
j,k 

][𝛽
k
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j
] (2) 

 

The AFRC Aerostructures branch utilizes an in-house code referred to as the Equation Derivation Code (EQDE) for 

deriving the load equations for a single wing station instrumented with conventional strain gages. 

B. Linear Regression Method Using FOSS 

Not only can conventional metallic strain gages be used in this approach, but the same technique could be used for 

FOSS. A single FOSS axial sensor or simulated FOSS rosette pattern could be used in lieu of a conventional strain 

gage and then the linear regression is performed as normal. Figure 4 shows the fiber installations on a wing. FOSS 

would allow multiple bending moment measurement stations to be designated along the span of the wing. Current 

computing capabilities permit many multiple linear regressions very quickly and efficiently producing a calibrated set 

of equations for the distributed load along a wing using FOSS sensors. 

C. Operational Loads Estimation Algorithm  

The ability to monitor hundreds even thousands of strains has led to the development of shape and load algorithms 

that take advantage of this new technology. Previous work at AFRC by Dr. Ko et al. [19-21] has shown the benefits 

of using a displacement transfer function to calculate the deformed shape of a wing under external loading. A large-

scale load test of the Global Observer wing (AeroVironment, Monrovia, Califronia) validated the shape algorithms 

(Jutte et al. [22]). Previous work by Richards and Ko [23] have patented a method for calculating operational loads, 

but sensor noise can make the method challenging to implement. The Richards and Ko method relies on taking a 

numerical derivative of bending moments with respect to span to estimate shear load. Though the equations are 

mathematically correct, measurement noise makes the output less accurate. It is generally advisable to avoid numeric 

differentiation when possible (Kreyszig [24]), since small inaccuracies in measurements can produce large errors as 

the length domain converges to a small distance. Another approach by Pak [25], uses the deformed shape from modal 

testing to calculate the accelerations and velocities which are then are used to calculate the loads on the wing. 

This paper describes an algorithm developed at AFRC which allows for the calculation of shear and bending 

moment distribution along the wingspan utilizing distributed strain measurements to compute wing bending shape and 

loading information. A brief formulation of the algorithm will be described here. The OLEA, is derived from the 

Classical Beam Theory (Euler-Bernoulli) for several beam configurations, including cantilever beams which are 
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analogous with the wing spar structure in an aircraft. The Classical Beam Theory can be used to relate the loading of 

a structure to the theoretical curvature, slope, and deflection of a cantilever beam. For the purposes of implementing 

the strain based OLEA, the equation of interest is the moment-strain relationship of the classical beam differential 

equation which states that the curvature, which is the second derivative of displacement z(y) of a beam, is proportional 

to the applied bending moment M as shown in Eq. (3): 

 

𝑑2𝑧(𝑦)

𝑑𝑦2
=

𝑀(𝑦)

𝐸(𝑦)𝐼(𝑦)
 (3) 

 

Since the bending moment cannot be measured directly, strain sensors placed on the upper and lower surfaces are 

utilized to quantify the bending moments. The bending stress on the upper surface and the normal stress-strain 

relationship is expressed as Eq. (4): 

 

𝜎𝑢𝑝𝑝𝑒𝑟(𝑦) =
𝑀(𝑦) ⋅ 𝑐𝑢𝑝𝑝𝑒𝑟(𝑦)

𝐼(𝑦)
= 𝐸(𝑦) ⋅ 𝜀𝑢𝑝𝑝𝑒𝑟(𝑦) (4) 

 

where εupper is the strain measurement on the upper surface, and cupper is the distance to the neutral axis relative to the 

upper surface. Rearranging terms, it can be shown as Eq. (5):  

 
𝑀(𝑦)

𝐸(𝑦)𝐼(𝑦)
=

𝜀𝑢𝑝𝑝𝑒𝑟(𝑦)

𝑐𝑢𝑝𝑝𝑒𝑟(𝑦)
 (5) 

 

As stated by Bakalyar [26], the distance to the neutral axis from the upper surface can be found experimentally by 

assuming a linear stress/strain distribution from the upper surface (εupper) to the lower surface (εlower). A pair of strain 

gages placed on the upper surface and lower surface at the same span location can be utilized to find the distance to 

the neutral axis by Eq. (6):  

 

𝑐𝑢𝑝𝑝𝑒𝑟(𝑦) =
ℎ(𝑦) ⋅ 𝜀𝑢𝑝𝑝𝑒𝑟(𝑦)

𝜀𝑙𝑜𝑤𝑒𝑟(𝑦) − 𝜀𝑢𝑝𝑝𝑒𝑟(𝑦)
(𝑦) (6) 

 

where h is the height difference between the upper surface sensor and the lower surface sensor. An illustration can be 

found in Fig. 6. By applying a known load and recording the strain response on the top and bottom surface of the 

structure, it is then possible to estimate the combined effective section properties (EI). Combining the beam moment 

equation in Eq. (5) with the neutral axis equation in Eq. (6), the combined effective section properties of the beam 

structure can be determined by Eq. (7). 

 

𝐸(𝑦)𝐼(𝑦) = 𝑀(𝑦) ⋅
ℎ(𝑦)

𝜀𝑙𝑜𝑤𝑒𝑟(𝑦) − 𝜀𝑢𝑝𝑝𝑒𝑟(𝑦)
 (7) 

 

It should be noted at this point that only one load case is required for obtaining the wing section properties. Once the 

section properties (EI) have been calibrated, the bending moment for various loading conditions can be estimated by 

Eq. (8). 

 

𝑀(𝑦) = 𝐸(𝑦)𝐼(𝑦) ⋅
𝜀𝑙𝑜𝑤𝑒𝑟(𝑦) − 𝜀𝑢𝑝𝑝𝑒𝑟(𝑦)

ℎ(𝑦)
 (8) 

 

Numerically integrating the curvature equation in Eq. (3) utilizing the trapezoidal rule, the distributed slope of the 

structure can be estimated by Eq. (9): 

 

𝜕𝑧

𝜕𝑦
= tan(𝜙) ≈  𝜙𝑛 = 𝜙0 + ∑ ((

𝑀

𝐸𝐼
)

𝑖
+ (

𝑀

𝐸𝐼
)

𝑖+1
) ⋅

Δ𝐿

2

𝑛−1

𝑖=1

 (9) 
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where tan (ϕ) ≈ ϕ for small angles, ϕi is the slope angle in the roll orientation at the ith sensing element, with the nth 

station representing the last sensing station at the tip, ϕ0 is the root slope, and ΔL is the distance between the sensor 

stations. The small angle approximation for the tangent function produces a relative error of less than 1 percent for 

angles less than 10° (0.175 radians), and less than 1-percent error for the sine function with less than 14° 

(0.244 radians). The small angle approximation also linearizes the relationship between loads and displacement. The 

vertical displacement (Zn) at each sensing station can be approximated by integrating the slope equation. The process 

of determining the vertical displacement at any sensing station n is called the Displacement Transfer Function (DTF) 

and can be determined by Eq. (10).  

 

𝑍𝑛 = 𝑍0 + ∑𝑠𝑖𝑛(𝜙𝑖) ⋅ Δ𝐿𝑖

𝑛

𝑖=1

 (10) 

 

Using small angle approximation sin 𝜙 ≈ 𝜙, the calculation for vertical displacement becomes Eq. (11). 

 

𝑍𝑂𝐿𝐸𝐴 = 𝑍0 + ∑𝜙𝑖 ⋅ Δ𝐿𝑖

𝑛

𝑖=1

 (11) 

 

An illustration of the OLEA flowchart is provided in Fig. 7. The OLEA utilizes the estimated shape (ZO) from 

Eq. (11), the calibrated section properties (EI) from eq. (7), and an initial guess of the shear loads VG(y) as input. The 

guess shear is then assigned to a temporary shear load variable (VM) for further processing. The OLEA calculates the 

shear load by integrating VM  three times with respect to the span to obtain a temporary variable of the distributed 

span-wise vertical deformation (ZM). The vertical deflection ZM is then compared with the estimated shape from the 

strain based shape (ZO) and determines the distributed span-wise percentage error between the two (KError). If the 

percentage error (KError) between the two shape estimates is not within desired tolerance, the temporary variable of the 

shear load (VM) is updated by multiplying KError with VM. A check is applied to the updated shear load variable (VM) 

to make sure that the results are consistent with a cantilever configuration, ensuring the shear load at the tip is set to 

zero, and to ensure that each shear load sensing station ordered from tip to root is greater or equal to the previous 

sensing station. The updated shear load (VM) is then reprocessed to obtain an updated ZM and checked for percentage 

error. The process repeats in a feedback loop until a desired threshold for KError is achieved. The shear load variable 

(VM) that satisfied the threshold is then processed to provide an output estimate for the applied bending moment MO 

and the shear load VO. For sequentially timed calculations of load, it is recommended that the output results for VO 

from the previous time (timei-1) frame be fed to the current VG to reduce the computation time enabling near real-time 

calculations. 

IV. Load Sensing Validation Discussion 

The project requirements for load measurement will dictate what the target errors on each load component should 

be, such as a flight envelope expansion application may be different than an aerodynamic model validation application. 

A brief survey of past load calibration testing results was conducted so that reasonable expectations could be 

established for this current investigation. The F-18 errors shown in Table 2 are for a 4-gage load equation that was 

derived using distributed and point load cases [2]. This case was added mainly to provide additional insight into a past 

historical example and to show the differences in distributed and point load calibration results. Based on prior load 

calibration experience, the typical target errors for this wing are expected to be less than 5 percent for vertical shear 

and bending moment and 20 percent or less for torque loads. Additional load calibration examples can be found in 

Refs. [9] and [27]. 

It is important to validate the chosen load sensing method with an independent check case as was done with the 

F-18 example previously mentioned. A valid check case is one that is not included in the original calibration data set. 

Typically, a check case is a flight representative case that provides confidence that the load sensing method whether 

linear regression or a newer method such as OLEA are valid for the expected flight loads. This investigation, just like 

past efforts calculated the errors between the derived load equations and measured loads taken from an independent 

check case. 
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Table 2. F-18 load calibration results. 

F-18 load case results – inboard station 4 gage equations, percent 

 Calibration set Independent check cases 

Shear – single point 16 8.5 

Shear – distributed 4.5 5.2 

Bending – single point 4.5 3.2 

Bending – distributed 2.5 2.2 

Torque – single point 7.5 5 

Torque – distributed 5 5.5 

    

The calculated errors for the derived load equations are obtained by taking the root mean square (RMS) error 

divided by the root mean square measured load, also referred to as equation root mean square (ERMS), which is a 

commonly used metric on many previous load calibration tests. The ERMS is shown by Eq. (12). The 𝑥𝑗 is the 

measured value, 𝑥′𝑗  is the derived value, and m is the number of load measurements. 

 

ERMS = 100 ∗ √
∑ (𝑥′𝑗−𝑥𝑗 )2m

𝑗=1

∑ 𝑥𝑗
2m

𝑗=1

  (12) 

V. Test Article Description  

The CREW test article taken from an MQ-9 is a high aspect ratio composite straight wing with a conventional two 

spar layout and a half-span of 30 feet. Figure 8 is a photo of the test wing prior to instrumentation installation. The 

wing contained two trailing edge control surfaces and a fixed leading edge. This wing was an ideal choice for looking 

at various load monitoring methods due to its simple structure. 

VI. Test Article Instrumentation 

The test wing was instrumented with conventional foil strain gages, and fiber-optic strain sensors. Deflection 

potentiometers, inclinometers, and digital image correlation (DIC) targets were also utilized for model validation and 

test monitoring purposes. Strain gages, in full-bridge configurations, were located at five spanwise stations. Each 

spanwise station contains eight full-bridge installations on the wing outer surface, as shown in Fig. 9. 

Figure 10 shows the locations of the 40 full-bridge strain gage installations at the five spanwise stations on the 

upper and lower surface. Figure 10 shows the locations of the 14 axial strain gages that were co-located with the fiber 

optic instrumentation along the forward spar. 

Figure 11 shows the locations of the eight internal full-bridge strain gage installations. The internal gages were 

located at the 4 inboard measurement stations. The most outboard measurement station had no internal strain gages. 

These gages were located on the spar webs. 

The particular FOSS, which was developed at AFRC and licensed to Sensuron (Austin, Texas), can be used to 

interrogate optical fiber with up to 1,000 distributed FBGs to provide real-time strain data. During structural testing 

of the wing structure, the FOSS was able to simultaneously and continuously interrogate eight 40-foot optical fibers 

at 0.5-inch intervals, providing nearly 8,000 strain sensors readings per scan at 20 Hertz.  

The FOSS network was installed on the wing in parallel with the coverage provided by the conventional foil strain 

gages. FOSS generated data were used to calculate distributed wing loading and wing deflections. There were a total 

of eight fiber runs on the wing with four each on the upper and lower surfaces. Straight fibers run the span of the wing 

along the forward and aft spars and along the 40-percent chord. A fiber routed in a +/-45 degree saw-tooth pattern 

runs along the span on the upper and lower surfaces. The saw-tooth patterns create simulated strain rosettes where 

they meet the straight fiber runs. Figures 12 and 13 show the layout of the fibers on the upper and lower surfaces, 

respectively. Figure 14 shows a photograph of the completed FOSS installations on the test wing bottom surface. 

Documenting the as-installed locations of the FOSS can be a tedious task. The project placed paper targets at 

specific FOSS locations and then laser scanned the wing. Laser scanning the wing allowed for the project to precisely 

locate the strain gages and FOSS sensors. Figure 15 shows the laser scanner targets located on the wing. The scanned 

laser target locations are shown in Fig. 16 along with the FEM model in Fig. 17. This process provided a FEM model 

that was automatically correlated to the FOSS sensor layout.  
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VII. Calibration Load Cases 

The 39 calibration load cases (load cases 2-40) were broken down into single point and distributed loads. These 

load cases were designed using engineering experience to move the load center on the wing both inboard and outboard 

as well as forward and aft. Load case 1 was comprised of 50 lb on each actuator as a holding load to maintain actuator 

contact with the wing. This case was not considered in the calibration data set and was analytically zeroed for the load 

calibration analysis. Load cases 2-19 were designated as point load cases, which means only a single hydraulic actuator 

was applying loads to the wing. Load cases 20-36 were distributed load cases intended for multi-gage load equation 

derivation. Load cases 37-40 were distributed load cases intended for use as independent check cases for the loads 

equations derived from load cases 20-36. All of the hydraulic actuators were in contact with the wing during load 

testing. The actuators that were maintaining contact had a preload of approximately 50 lb. The point loads were 

converted into shear, bending moment, and torque load based on the load cell load and the moment arms. Figure 18 

shows the load cases plotted on a bending moment and torque plot. Figures 19, 20, and 21 show the shear, bending 

moment, and torque loads, respectively, for the applied load cases. 

VIII. Test Setup and Execution 

The test wing was cantilevered from a self-reacting wing loads test fixture. The bottom surface of the wing was 

about 82 inches off of the floor. Four aircraft pins were used to secure the wing spars to a simulated wingbox, which 

was secured to the test fixture as shown in Fig. 22. Load was applied to the wing using a system of 18 load trains. 

Each load train included a hydraulic actuator, force transducer, and load pad. The load trains were designed to provide 

an up load to the wing at 18 load points. Figure 22 shows the deflected wing during test operations. 

Eighteen load pads distributed the applied load along both spars on the lower surface. Each load pad had a 

machined aluminum backing plate with a 0.5-inch thick Neoprene blend closed cell foam rubber bonded to it. The 

contact surface area for each load pad is 5 inches wide by 20 inches long. Note that the load pads are oriented along 

the length of the spar. Figure 23 shows the position of the load pads on the lower surface and a picture of a typical 

load pad. Although all load pads have the same contact area, they are each uniquely contoured for the wing lower 

surface at the forward and aft spar locations. 

IX. Load Sensing Analysis Results 

Strain gage, FOSS, and load cell data were collected from load cases 2-40. The data provided a rare opportunity 

to assess different load sensing methods. Depending on a project’s requirements, some of these methods may or may 

not be pertinent. In this case, the project was able to assess the practicality of linear regression and OLEA shape 

methods from the given data set. The process for calculating the results will be described along with the results 

compared against each other. Table 3 highlights the different cases, type of instrumentation, and what calibration and 

independent check load cases were used.  

  Table 3. Test result cases. 

Method Calculated loads Calibration cases Check cases Instrumentation 

Linear regression Shear, bending, and torque Point load cases 2-19 Load case 37 and 40 Strain gage 

Linear regression Shear, bending, and torque Distributed load cases 20-36 Load case 37 and 40 Strain gage 

Linear regression Bending and torque Point load cases 2-19 Load case 37 and 40 FOSS 

Linear regression Bending and torque Distributed load cases 20-36 Load case 37 and 40 FOSS 

OLEA – shape method Shear and bending Load case 30 Load case 37 and 40 FOSS 

 

The linear regression analysis of the strain gages was accomplished as follows. The data from the load calibration 

load cases were partitioned into three types:  single point, distributed loads, and check cases. The single point load 

cases 2-19 and the distributed load cases 20-36 were used for multi-gage load equation derivation. Load cases 37-40 

are the distributed load cases used as independent check cases for the derived load equations. 

The load summation for shear, bending moment, and torsion was created at the 5 spanwise measurement stations 

for each load case. The data were reviewed to assess the structural hysteresis and signal noise. The third load cycle 

increasing ramp was used in the derivation. The data were used in the load equation derivation to calculate the strain 

gage output for all possible load equations for 2, 3, 4, 5, and 6 gages. The load equation derivation is based on a least-

squares curve fit. The 4 gage load equations were chosen based on providing reasonable errors for the minimum 
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number of required gages. The load equation derivation output was compared to the independent check case to create 

the check case RMS error. 

A similar process was used for the linear regression of the FOSS data. Analysis of the FOSS data required load 

equations to be calculated at every FOSS station (23 total). The number of stations was based on the locations that 

FOSS simulated shear rosettes were located. The same load cases used for the conventional strain gage linear 

regression were also used for the FOSS linear regression analysis. 

The OLEA shape method analysis used only load case 30 for the calibration case to extract the wing section 

properties. Load case 30 was the max bending case for the test program. Once the section properties have been 

calculated, the vertical shear and bending moment loads can be solved for using the OLEA method described above. 

Using the OLEA method is a simplification to the test execution operation in that only one case is required for the 

calibration. Given that the test article is a simple high aspect ratio wing, the outboard tip load case is sufficient for 

obtaining the wing section properties. A low aspect ratio wing may require additional calibration cases. 

Load cases 37 and 40 were selected as the independent check cases for assessing the quality of the load predictions. 

Figures 24 and 25 show the vertical shear load over the wing span for load cases 37 and 40, respectively. The linear 

regression method using strain gages and the OLEA method was used. The ERMS is also shown for the various 

methods for both load cases. The shear load plots at first look show reasonably good results. The ERMS comparison 

for load case 37 show errors of approximately 20 percent, but the larger error is mainly due to taking the difference in 

derived and measured loads and dividing them by small measured loads. There is a point where low load values and 

signal noise start to hinder the calculation. The RMS plots will only make comparisons at the 5 span wise measurement 

stations, all located within the inboard 60 percent of the wing span. The wing inboard section provides a reasonable 

comparison, less than 5-percent target error, where the signal is above the noise. Load case 40 had larger shear load 

response than load case 37, thus providing better comparisons over the entire measurement section. Also, the linear 

regression distributed load calibration had less error than the point load calibration, just as what was found with the 

F-18 parametric study. The OLEA method was calculated for the shear, and it too matched very well with the truth 

source. The OLEA match is notable because remember that only one case was required for obtaining the wing section 

properties. 

Figures 26 and 27 show the bending moment comparisons for load cases 37 and 40, respectively. Linear regression 

calibration was performed using FOSS sensors and strain gages. The OLEA method was performed using only FOSS 

data. The wing load versus span plots show excellent agreement. The ERMS plots are scaled up to 10 percent to better 

illustrate differences between the various techniques. The linear regression using FOSS sensors contains slightly more 

error than the linear regression of the strain gages, and is expected because there were more strain gages available in 

the loads derivation than FOSS rosettes. It would be expected that with an increase number of FOSS sensors, the 

FOSS errors would be lower. A majority of the linear regression FOSS sensor errors fall below the target error of 

5 percent which compares well to prior tests and is still adequate for most applications. Again the linear regression 

strain gage distributed load calibration errors are better than the ones derived from the point calibration. The OLEA 

method bending moment provides errors on the order of linear regression FOSS method.  

Figures 28 and 29 show the torque comparisons for load cases 37 and 40, respectively. These plots compare the 

linear regression of strain gages and FOSS. The target for the torque calibration was 20 percent. Based on prior load 

calibration tests, the torque error can be much higher. Given the low signal output for load case 37, there are errors 

larger than the 20-percent target. The linear regression torque results compare better for case 40 than for case 37, and 

can be explained by observing the strain output for cases 37 and 40. Figure 30 highlights the strains for load case 37 

and 40. The shear-strains for check case 37 are lower than case 40 for almost the entire span which explains the poor 

quality torque comparison for case 37.  

The results for check case 37 and 40 compare very well for the linear regression using strain gages and the OLEA 

method. The results for the linear regression using FOSS data compare qualitatively well to the truth source for the 

bending moment and torque loads. There are a few things that can be concluded from this short comparison of 

methods. Linear regression of strain gages provides a reliable method for monitoring loads at individual span stations. 

The OLEA method works very well for calculating vertical shear loads and provides a sound method for monitoring 

distributed loads even for low strain outputs such as case 37. The linear regression of FOSS data can work for bending 

moment and torque load cases as long as acceptable levels of strain are produced. The chord length of the wing did 

not provide the ability to apply large torque loads. Larger torque load applications would have required applying loads 

to the control surfaces of the wing or applying loads to the wing using clamping techniques to increase the torsion 

arm.  

A summary of the recommended load sensing methods is shown in Table 4. Overall, conventional strain gages are 

more applicable to situations which require monitoring a small number of wing stations (5 or less). Anything more 

than a few wing stations would best be served by FOSS sensors. The sensor locations that have been recommended 
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for strain gages are still applicable to FOSS sensors. FOSS may be easier to install on the wing surface compared to a 

spar web and may require the OLEA method instead of possibly using linear regression techniques. Linear regression 

methods are still preferred for bending moment and torque calculation due the ease of implementation. Unless FOSS 

simulated shear rosettes are installed on the shear web, or a large number of conventional shear strain gage rosettes, 

the OLEA method will need to be used. FOSS and OLEA provide the ability to measure shear loads using a single 

calibration load case. The reader should be careful using only one load case for linear regression methods. The only 

time using one calibration case is possible is for structures with straightforward load paths when calculating bending 

moments. Table 4 summarizes the available approaches for load calibration of a high aspect ratio wing using strain 

gages or FOSS. 

Table 4. Load sensing recommendations for a high aspect ratio wing. 

Load type Recommended 

sensor 

Strain sensor orientation and 

location 

Recommended 

number of load cases 

Recommended 

calibration method 

Shear – single wing 

station 

Conventional 

strain gages 

Shear rosette located on shear 

web  

Axial strain sensor located on 

spar caps 

Number of load cases 

> number of strain 

sensors in the equation 

Linear regression 

Bending moment – 

single wing station 

Conventional 

strain gages 

Axial strain sensor located on 

spar caps 

1 load case Linear regression 

Torque – single 

wing station 

Conventional 

strain gages 

Axial strain sensor located on 

spar caps 

Shear rosette located on shear 

web or skins 

Number of load cases 

> number of strain 

sensors in the equation 

Linear regression 

Shear – distributed 

load 

FOSS sensors Axial strain sensor located on 

spar caps 

1 load case OLEA 

Bending moment – 

distributed load 

FOSS sensors Axial strain sensor located on 

spar caps 

1 load case Linear regression 

Torque – distributed 

load 

FOSS sensors Axial strain sensor located on 

spar caps 

Shear rosette located on shear 

web or skins 

Number of load cases 

> number of strain 

sensors in the equation 

Linear regression 

X. Instrumentation Trade Study Discussion 

The ability to measure thousands of strains with a fiber the diameter of a hair has many benefits for the aerospace 

field [8]. The advantages and disadvantages of fiber and strain gages will now be discussed. Metallic foil strain gages 

have been around for many decades, and the installation and monitoring processes are well known. A strain gage full 

bridge has self-temperature compensation. A strain gage rosette can be installed easily to monitor high stress areas or 

in hard to reach places where a single measurement is required. A requirement for only a small number of strain 

sensors are most likely best handled by strain gages. In comparison, fiber optics are more for open areas that require 

a large number of sensors like a wing skin or even a spar web. Fiber can be routed in such ways to create strain rosettes 

similar to that of rosette strain gages. There are numerous benefits to installing fiber. Fiber has the capability to be 

multiplexed serially allowing for multiple spanwise measurements on one fiber. Fiber is lightweight for the number 

of strain sensors available compared to the weight of a similar number of strain gages. FOSS is also immune to electro-

magnetic interference or electro-magnetic pulses unlike strain gages. Given a large number of sensors, fiber can be 

installed much quicker than an equal number of strain gages. The monitoring objectives for a project will determine 

the ideal sensor whether it be FOSS or conventional strain gages. 

XI. Conclusions 

A straight tapered wing was instrumented with conventional foil strain gages and fiber optic strain sensors. This 

paper showed the results of using conventional linear regression calibration techniques and a wing shape algorithm to 

calculate the distributed vertical shear, bending moment, and torque loads along the wingspan. This paper was a first 
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step in characterizing the different approaches. The project requirements for load monitoring play a key role in 

determining which sensor and load sensing method should be used whether it be for airworthiness envelope clearance, 

structural health monitoring, load alleviation, structural design optimization, or aerodynamic model validation. 

The five strain gage instrumented spanwise stations were calibrated using linear regression techniques for shear, 

bending moment, and torque loads utilizing approximately 20 load cases. The advantages to using conventional 

metallic strain gages and linear regression techniques are the fact that it is a straight forward, efficient method for 

monitoring loads on a wing for airworthiness flight clearance. The disadvantage is that only a small number of wing 

stations can be monitored, and a large number of load cases are required for the calibration. Additional sensing stations 

increase the wire weight and routing complexity. The arrival of FOSS installed on the outer wing surface in 

conjunction with the use of linear regression techniques can be used to calculate a distributed bending and torque load 

along the wing. The test results plotted in this paper show that linear regression techniques for FOSS can work. The 

wire weight and routing complexity issues are then greatly reduced.  

The OLEA shape method provided a very good match to the check cases for shear and bending loads and was 

similar to a conventional calibration using conventional metallic strain gages and linear regression techniques. Using 

the state of the art FOSS approach, only a single load case was required to calibrate the system to provide the 

distributed loads over the wing span, thus providing a great deal more load information for flight monitoring. Strain 

gages would not have been applicable for this method. The results of this study clearly demonstrate that there are 

advantages to be gained by using FOSS instrumentation in terms of providing distributed wing load information, 

reducing instrumentation weight, and reducing load test calibration complexity. 

Figures 

 

Fig. 1. X-29A forward swept wing load measurements. 
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Fig. 2. Active Aeroelastic Wing load measurements. 

 

 

Fig. 3. Active Aeroelastic Wing loading zones. 
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Fig. 4. Wing load description. 

 

Fig. 5. Data for loads calibration. 
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Fig. 6. Strain description for Operational Load Estimation Algorithm. 

 

 

Fig. 7. Operational Load Estimation Algorithm flowchart. 
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Fig. 8. Wing test article. 

 

 

Fig. 9. Strain gage installations at a typical spanwise station. 
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Fig. 10. Strain gage instrumentation on upper and lower surfaces. 

 

 

Fig. 11. Internal strain gage locations. 

 

 

Fig. 12. FOSS layout on upper wing surface. 
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Fig. 13. FOSS layout on lower wing surface. 

 

Fig. 14. Completed FOSS installation. 

 

 
 

Fig. 15. Laser scan target locations. 
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Fig. 16. Laser scanned targets. 

 

 

Fig. 17. FEM model created from laser scan. 

 

 

Fig. 18. Bending torque plot. 
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Fig. 19. Load cases – shear loads. 

 

Fig. 20. Load cases – bending loads. 
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Fig. 21. Load cases – torque loads. 

 

Fig. 22. Test execution. 
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Fig. 23. Load pad locations and loading zone numbering. 

 

 

 

Fig. 24. Load check case 37 results – wing shear. 
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Fig. 25. Load check case 40 results – wing shear. 

 

Fig. 26. Load check case 37 results – wing bending. 
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Fig. 27. Load check case 40 results – wing bending. 

 

 

Fig. 28. Load check case 37 results – wing torque. 
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Fig. 29. Load check case 40 results – wing torque. 

 

Fig. 30. FOSS strains for load case 37 and 40. 
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